ForLab PICT2DES
For the german press release, please scroll down.
New Cluster tool for 2D-Materials and Devices funded by the BMBF
A consortium consisting of research groups at RUB that includes engineers (Plasma and Microsystems) and chemists (Inorganic Materials Chemistry) have been granted a new project “ForLab PICT2DES” funded by the Bundesministerium für Bildung und Forschung (BMBF). This is one among the twelve ForLabs in Germany that have been granted by the BMBF.
The RUB project team: Anjana Devi, Peter Awakovicz, Julian Schulze, Claudia Bock und Martin Hoffmann (from left to right)
The granted 4 million Euros by the BMBF is to acquire a unique cluster tool that integrates ALD, ALE, PECVD, RIE and in-situ plasma diagnostics. This state-of-the-art tool will be employed for the deposition of 2D-materials, etching, passivation and subsequently device structures will be fabricated that will play an important role in the future for various applications in the field of microelectronics, optoelectronics, sensors, energy etc.
The interdisciplinary research activities starting from precursors chemistry to materials development followed by process diagnostics and device fabrication will be the key to realize the goals of various projects that will be carried using the “ForLab- PICT2DES” cluster tool at RUB.
Link to ForLab PICT2DES project homepage
Neues Forschungslabor für 2D-Materialien
2D-Materialien sind aus einzelnen Atomlagen aufgebaut und sollen ungeahnte Anwendungen für Mikroelektronik und Elektroniksysteme erschließen. Um sie zu erforschen, bekommt die Ruhr-Universität Bochum (RUB) ein sogenanntes Clustertool, das unterschiedliche Prozesse in einer Vakuumanlage vereint und so einzigartige Prozessabläufe für 2D-Materialien ermöglicht. Das Labor namens „Pict2Des“ ist eines von zwölf in Deutschland, die das Bundesministerium für Bildung und Forschung (BMBF) fördert. Rund 4 Millionen Euro fließen dafür an die RUB. Am 5. Februar 2019 findet das Kickoff des Projekts in Aachen statt. Im Sommer 2020 soll das Labor in Betrieb gehen.
Vorteile und Herausforderungen dünner Schichten
Aus einzelnen Atomlagen aufgebaute und nanostrukturierte Materialien erlauben neue Bauelemente für Mikro- und Optoelektronik sowie Sensoren der Zukunft. Ihre Vorteile sind vielfältig: Indem man solche dünnen Schichten zum Beispiel auf Folien aufbringt, kann man elektronische Bauteile flexibel machen. Da die Schichten so dünn sind, wird darüber hinaus bei ihrer Herstellung kaum Material verbraucht, ein wesentlicher Beitrag zur Ressourceneffizienz.
„Die geringe Dicke zweidimensionaler Schichten ist aber auch eine Herausforderung“, sagt Prof. Dr. Martin Hoffmann vom Lehrstuhl für Mikroelektronik, der das Labor an der RUB koordiniert. „Solche dünnen Schichten reagieren mit allem, deswegen muss man sie nach dem Aufbringen sofort durch weitere Schichten schützen. Um die Funktionsschicht dann zu bearbeiten und etwa zu strukturieren, muss die Schutzschicht wieder geöffnet werden – natürlich ohne die darunter liegende Schicht zu verletzen.“
Träger wandern von einer Kammer in die andere
Die an der RUB geplante Anlage besteht daher aus fünf Vakuumkammern, die sternförmig um einen Roboter herum angeordnet sind. Zwei von ihnen dienen der Beschichtung mit 2D-Materialien, eine dazu, Schutzschichten darauf aufzubringen, und zwei weitere zum zielgenauen Ätzen von Nanostrukturen. „Die Substrate wandern im Vakuum von einer Kammer in die andere“, beschreibt Martin Hoffmann.
Während er und Dr. Claudia Bock von der Anwenderseite auf die so entstehenden 2D-Materialien blicken, beschäftigt sich Prof. Dr. Anjana Devi von der Arbeitsgruppe Chemie Anorganischer Materialien mit der Entwicklung neuartiger Materialsysteme, in denen noch sehr viel Potenzial steckt, und der zugrunde liegenden Präkursorenchemie.
Das Team von Prof. Dr. Peter Awakowicz und Dr. Julian Schulze am Lehrstuhl Allgemeine Elektrotechnik und Plasmatechnik erforscht die Diagnostik, Optimierung und Entwicklung von neuen Prozessen in Plasmen, mit denen sich gezielt Strukturen atomlagengenau ätzen lassen. „Die neue Anlage steht RUB-intern, aber auch darüber hinaus interessierten Forscherinnen und Forschern für Kooperationen offen und wird von den beteiligten Antragstellern gemeinsam beschafft und betrieben“, betont Hoffmann.
Forschung auf internationalem Niveau
Hintergrund der Initiative des Bundesministeriums für Bildung und Forschung ist, in Deutschland und Europa Forschung auf internationalem Niveau im Bereich Mikroelektronik zu ermöglichen. Die „Forschungslabore Mikroelektronik Deutschland“ vernetzen sich untereinander und mit externen Partnern für einen besseren wissenschaftlichen Austausch und stärkere Kooperation. Basis für die Förderung durch das BMBF ist die disziplinenübergreifende Kooperation der Antragsteller von der Chemie über die Plasmatechnik bis hin zur Mikroelektronik und Mikrosystemtechnik und die Expertise auf diesen Gebieten. Darüber hinaus ist das Labor angebunden an das Materials Research Department und das Zentrum für Grenzflächendominierte Höchstleistungswerkstoffe unter Leitung von Prof. Dr. Alfred Ludwig sowie an das Research Department Plasmas with Complex Interactions.
Presseinformation der RUB